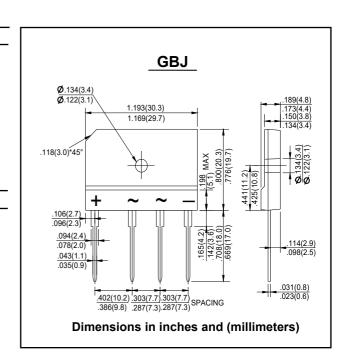


GBJ35005 THRU GBJ3510

GLASS PASSIVATED BRIDGE RECTIFIER

Reverse Voltage - 50 to 1000 Volts Forward Current - 35.0 Ampere


FEATURES

- Glass passivated chip junction
- Reliable low cost construction utilizing molded plastic technique
- Ideal for printed circuit board
- Low reverse leakage current
- Low forward voltage drop
- High surge current capabiliy

MECHANICAL DATA

- Case: Molded plastic, GBJ
- Terminals: Terminals: Leads solderable per MIL-STD-202 method 208 guaranteed
- Epoxy: UL 94V-0 rate flame retardant
- Mounting Position: Any

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Single phase half-wave 60Hz,resistive or inductive load,for capacitive load current derate by 20%.

Parameter	Symbols	GBJ 35005	GBJ 3501	GBJ 3502	GBJ 3504	GBJ 3506	GBJ 3508	GBJ 3510	Units
Maximum Recurrent Peak Reverse Voltage	V_{RRM}	50	100	200	400	600	800	1000	V
Maximum RMS Voltage	V _{RMS}	35	70	140	280	420	560	700	V
Maximum DC Blocking Voltage	V _{DC}	50	100	200	400	600	800	1000	V
Maximum Average Forward Rectified Current with Heatsink at T _C = 100 °C	I _(AV)	35							А
Peak Forward Surge Current, 8.3 ms Single Half-Sine -Wave superimposed on rated load (JEDEC Method)	I _{FSM}	400							Α
Maximum Forward Voltage at 17.5 A DC and 25°C	V _F	1.1							V
Maximum Reverse Current at T _A = 25 °C at Rated DC Blocking Voltage T _A = 125 °C	I _R	10 500							μA
Typical Junction Capacitance 1)	CJ	85							pF
Typical Thermal Resistance 2)	$R_{\theta JC}$	0.8							°C/W
Operating and Storage Temperature Range	T_J,T_S	-55 to +150							°C

¹⁾ Measured at 1 MHz and applied reverse voltage of 4 VDC.

²⁾ Thermal resistance from junction to case with device mounted on 300 mm X 300 mm X 1.6 mm Cu plate heatsink.

GBJ35005 THRU GBJ3510

RATINGS AND CHARACTERISTIC CURVES

FIG.1- MAXIMUM FORWARD CURRENT DERATING CURVE

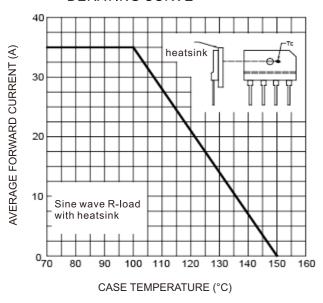


FIG.2- MAXIMUM NON-REPETITIVE FORWARD SURGE CURRENT

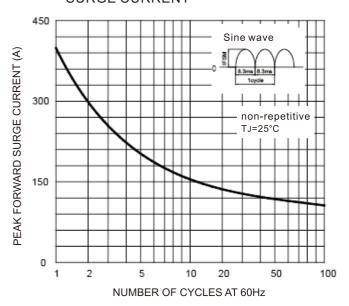


FIG.3-TYPICAL INSTANTANEOUS FORWARD CHARACTERISTICS

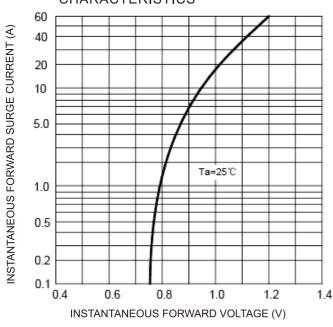
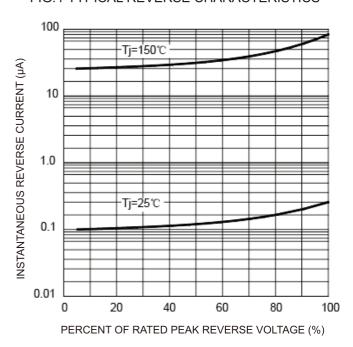



FIG.4-TYPICAL REVERSE CHARACTERISTICS

